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Abstract. This paper combines three topics to which Amir Pnueli con-
tributed significantly: the semantics of languages for concurrency, the
semantics of statecharts, and reactive and hybrid systems. It is also no
accident that the main motivation of our paper comes from biological sys-
tems: in recent years Amir became interested in these too. In [KLH10] we
introduced Biocharts, a fully executable, two-tier compound visual lan-
guage for modeling complex biological systems. The high-level part of the
language is a version of statecharts, which have been shown to be suc-
cessful in software and systems engineering. These statecharts can then
be combined with any appropriately well-defined language (preferably
a diagrammatic one) for specifying the low-level dynamics of the bio-
logical pathways and networks. The purpose of [KLH10] was to present
the main concepts through a biological example and to illustrate the
feasibility and usefulness of the approach. Here we discuss some of the
questions that arise when one attempts to provide a careful definition
of the semantics of Biocharts. We also compare the main requirements
needed in a language for modeling biology with the way statecharts are
used in software and system engineering.

1 Introduction

In recent years it is becoming clearer that understanding and predicting the be-
havior of complex biological systems requires developing and using new compu-
tational modeling languages and tools. In addition to the reductionist approach,
which has been very successful in uncovering biological mechanisms, there is a
need to integrate and synthesize the knowledge gained through reductionism to
build system-level models that can explain and predict the behavior of a system
as a whole and not only focus on very specific parts or aspects of the system
behavior.

The language of Statecharts, which has proven to be very useful for specifying
complex reactive software and systems, has been applied in the past ten years
to modeling biological systems [KCH01, FPH+05, EHC07, SCDH08]. There are
many aspects for which the statecharts approach is well suited to biological
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modeling, but also several major challenges specific to biology that led us to
introduce Biocharts, a variant of statecharts geared towards biological modeling.
Here we explain to a non-biological reader some of the challenges Biocharts aims
to address and outline a definition of the semantics of the language. We have not
yet built a dedicated tool to support Biocharts (in [KLH10] we used Rhapsody
for demonstrating the feasibility of the approach), and some of the semantic
decisions are still to be made. For various issues we point out here different
semantic options and their implications.

2 Biological Modeling with Differential Equations

The traditional mathematical approach for modeling biological systems has been
to use tools from classical continuous mathematics, mainly differential equa-
tions, and despite its successful application in many cases, this approach suffers
from several limitations. First, differential equations require numeric values for
the coefficients in the equations, values which are often unknown and can be
very difficult to determine experimentally. Second, the continuous assumption
is sometimes not valid when we consider a small number of molecules or cells.
Third, often the level of abstraction that biologists use when thinking about
their systems is discrete; for example, considering a gene to be either on or off,
a signal to be low, medium or high and the differentiated fate of a cell to be
primary, secondary or tertiary. Biologists know that these discrete values are
only an abstraction but since this way of thinking is useful to them, we deem
it an important facet of any approach to modeling that the languages and tools
support such abstractions in a natural way. Finally, our computational ability
to handle large systems of differential equations is often extremely limited.

3 Challenges in Biological Modeling

There are many reasons why modeling biological systems is extremely challeng-
ing. First and foremost is the inherent complexity of biological artifacts. Even
when one focusses “merely” on modeling the behavior of a single cell, the process
is likely to result in a model that is more complex than most engineered soft-
ware systems. There are certain aspects of biology that are best treated using a
continuous approximation, or differential equations, and there are other aspects
where discrete methods are more suitable. A combination of these approaches
would lead to hybrid models, which may play an important role in biological
modeling, but only if suitable languages and tools are developed to integrate the
approaches in an intuitive and rigorous manner.

A biological system can be examined and modeled on many scales: the molec-
ular scale, the cellular scale, the scale of a tissue or an organ, or the scale of an
organism or an entire population. For certain purposes, focusing on one scale is
sufficient, while for other purposes building system-level models that incorporate
several or even all of these scales is a must.
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Now, multi-scale models can be constructed using the same language for de-
scribing each of the scales, or using different languages to describe the behavior
on each scale. Whenever several languages are used, the interaction between
the different scales described in different languages and sub-models must be
clearly defined and has to be well integrated in the supporting tools. These
types of multi-scale models are also challenging due to the computational re-
sources needed to run them effectively.

We now discuss in more detail some of the common aspects and differences
between biology and reactive software and the influence they have on the appro-
priate task of language design.

4 Biology vs. Software

A fundamental observation regarding biology and software, which leads to the
idea of using languages that have proven themselves effective in software design
also for biological modeling, is the fact that both types of systems (in the case of
software this applies to many of the most complex kinds of systems) are reactive
in nature. Reactive systems [HP85] are those whose role is to maintain an ongo-
ing interaction with their environment, rather than produce a final result upon
termination. Both types of systems are composed of many different parts, that
act together in order to maintain the desired interaction with the environment
and to achieve some required high-level system goals.

At the heart of the statechart language, which was designed specifically to
deal with the dynamic behaviors of reactive systems, are states and transitions
and ways to describe them in an intuitive and concise manner. This turns out
to be very important also in biological modeling. In fact, many biologists are
already used to thinking, and informally describing, their systems in terms of
states and changes between states in response to the occurrence of certain events.
Thus, adopting statecharts for biological modeling is quite natural.

A main difference between the software and biology domains is that for the
former the main goal is constructing a system that will satisfy a set of require-
ments whereas for the latter the main goal is to understand how an existing
biological system works. This is really the difference between engineering and
reverse-engineering. It is interesting to observe that the emerging field of syn-
thetic biology [End05] aims to go a step forward and engineer new biological
systems to achieve given goals, typically by modifying certain aspects of existing
systems, yet even for this direction the ability to understand and predict the
behavior of existing biological systems is crucial.

While modeling a biological system, the model can be considered as a theory
aiming to explain the behavior of the system, so that one’s confidence in the
theory increases if the model can predict behaviors that have not been observed
yet. Such behaviors are sometimes considered to be emergent properties of the
model, since despite not being explicitly programmed they emerge as a result of
the combined interactive behavior of many components. Such behaviors may be
hard to predict and understand without a fully executable model.
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All relevant and interesting predictions arising from the model must be ver-
ified experimentally, since even models that seem very plausible could well be
wrong and thus the model and its result can only serve as a guide towards per-
forming interesting experiments in the lab. Biological models are more valuable
if in addition to their predictive capabilities they have the ability to explain
the phenomena by uncovering hidden mechanisms and underlying principles. In
general, the full correctness of a model can never be established; hence the main
goal is to refute potential models and thus to try and rule out hypotheses about
the principles of the system behavior. This is a very Popperian approach to
modeling. See [Har05].

Building models for biological systems is also different from software con-
struction due to the fact that there are many aspects of biology that we still
do not understand, and many units and components whose role in certain pro-
cesses in still largely unknown. Thus, almost any attempt at biological modeling
must involve dealing with such “black boxes”. In software modeling and design
there is a much clearer understanding of the system being developed, including
the requirements, architecture and implementation, yet it is still very helpful
to use abstraction and “black boxes”, which provide freedom from the bias of
implementation and thus help develop more robust software. In software models
one aims to simplify and to avoid redundancy, whereas biological systems have
many inherent redundancies. Hence, when modeling biology any simplifications
to the model should be done very carefully, considering the assumptions made
in the model and their implications, since a model that can reproduce biological
behavior is not a goal in itself. Rather, we are mainly interested in what can be
learned from the model and from its predictive capabilities.

In both software and biology, the ability to involve the domain experts, the
various stake-holders in a software project and experimental biologists in biologi-
cal modeling, is key to the success of the effort. In this way, developing languages
and tools that are useful and intuitive for non-programmers is essential, which
appears to be one of the major strengths of both Statecharts and Biocharts.

5 Semantics Outline

Biocharts is a fully executable, two-tier compound visual language for modeling
complex biological systems. The high-level part of our language is a version of
statecharts, which can be combined with any appropriately well-defined language
(preferably a diagrammatic one) for specifying the low-level dynamics of the
biological pathways and networks. We now outline the semantics of the variant
of statechart we propose to use in Biocharts, and discuss how it integrates with
the lower level languages.

5.1 The Basics

The statechart itself is similar to the original description in [Har87], and to that of
Statemate [HN96] and Rhapsody [HG97], in that there are three types of states:
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OR-states, AND-states and basic states. The OR-states have substates related to
each other by “exclusive or”, AND-states have orthogonal components that are
related by “and”, while basic states have no substates, and are the lowest in the
state hierarchy. When building a statechart there is an implicit additional state,
the root state, which is the highest in the hierarchy. The active configuration is a
maximal set of states that the statechart can be in simultaneously, including the
root state, exactly one substate for each OR-state in the set, all substates for each
AND-state in it and no additional states. The general syntax of an expression
labeling a transition in a statechart is “m[c]/a” where m is the message that
triggers the transition, c is a condition that guards the transition from being
taken unless it is true when m occurs, and a is an action that is carried out if
and when the transition is taken. All of these parts are optional.

5.2 Classes and Objects

For Biocharts we adapt some of the basic principles of the Rhapsody semantics
of statecharts, as described in [HG97, HK04], especially the way statecharts are
incorporated into an object-oriented framework. The motivation for this decision
is that typical biological models require specifying many entities (e.g., cells) with
the same specification but each one in a different active configuration. These
entities (e.g., cells) can be born and may die during model execution, so the
object oriented framework is a natural one for representing such models.

A system is composed of classes. A statechart describes the modal behavior
of the class; that is, how it reacts to messages it receives by defining the actions
taken and the new mode entered. A class can have an associated statechart
describing its behavior. These classes are called reactive classes. During runtime
there can exist many objects of the same class, called instances, and each can be
in a different active configuration – a set of states in which the instance resides.
Thus, a new statechart is “born” for each new instance of the class, and it runs
independently of the others. When a new instance is created, the statechart
enters its initial states by taking default transitions recursively until it is in an
active configuration.

A new feature that we propose for Biocharts, building on our experience from
previous biological projects, is to enable an object to dynamically create a new
object of the same class in exactly the same active state as it is in at the moment
of creation. This is useful in several biological contexts; for example, during cell
division, where daughter cells typically inherit the state of the mother cell. In
this case, the statechart of the daughter cell is “born” in an active configuration
identical to its mother cell, and no default transitions are taken as part of this
initialization.

5.3 Messages and Actions

As mentioned above, the general syntax of an expression labeling a transition
in a statechart is “m[c]/a”, for message m, condition c and action a. We now
describe each of these parts in more detail. The message m is either an event
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or a triggered operation. Consider a simple transition between states S1 and S2
labeled “m[c]/a”. Regardless of whether m is an event or a triggered operation,
if the statechart is in state S1, message m occurs and the condition c holds, state
S1 is exited, the action a is performed and then state S2 is entered.

A practical question concerns the language in which the conditions and actions
should be written. Statemate introduces a special action language for this pur-
pose, whereas Rhapsody, which is geared towards software development, allows
using the implementation language produced by the code generator, e.g., C++,
as the action language. We leave this as an open decision for Biocharts. On the
one hand, the main advantage of using an existing programming language for
the action language is easy integration with other software modules and tools,
which is an important aspect of Biocharts since one of the main ideas is that the
lower level modules can be described in appropriate existing languages and tools.
However, on the other hand, defining a special-purpose action language may be
very beneficial, as it makes the models more language and platform independent.
Also, by carefully restricting the expressive power of the special action language
compared to a language like C++ , verification and analysis tools can be more
effective, which is also an important consideration for biological modeling.

Events represent asynchronous communication, while triggered operations
represent synchronous communication. Both are supported in Rhapsody and we
suggest that they also be supported by Biocharts. Both an event and a triggered
operation are invoked by a sender object that invokes the destination object.
For an event a special event instance is created and is placed in an event queue.
The sender object can then continue its work without waiting for the receiver
to consume the event, which will take place later when the event reaches the
top of the queue and is dispatched to the destination object, potentially trigger-
ing a transition. Even though an event queue does not seem to have any direct
counterpart in biological systems, our current experience shows that events are
a practical solution for modelers, since the event does not have to worry about
the receiver being able to communicate. This fits well with the modeling view
that considers entities in the model as autonomous agents.

A triggered operation is a synchronous operation, thus the sender object must
wait until the receiver object responds to the invocation, possibly causing a
transition. Triggered operations may return a value to the calling object, the
value being specified on the transition. If no transition is triggered by invoking
the triggered operation, a special value is returned and the sender object can
proceed. Our current experience from several statechart-based models that used
Rhapsody shows that events were used more often than triggered operations,
although we believe both are useful for biological modeling.

Events can also have attributes (variables), which the sender object sets to
concrete values when sending an event. This feature is useful for biological mod-
eling where one needs to deal with more quantitative information about the
strength of certain signalling events. Events can be sub-classed, a mechanism
that can be used in order to add attributes. In particular, if event e′ is derived
from event e in this way, e′ will trigger any transition that has e as a trigger.
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5.4 Inheritance and Statechart Modification

A basic feature of object-oriented programs is inheritance, which allows class B
to be a subclass of class A, thus inheriting its variables and methods, which can
later be modified by the programmer of class B. Rhapsody deals with inheritance
of reactive classes (ones that have a statechart), by copying the statechart of the
superclass to the derived class, and allowing the modeler to perform certain
restricted changes in the derived class. In particular, B inherits all As states
and transitions, and these cannot be removed, though certain refinements are
allowed.

Inherited states can be modified in three ways: 1) decomposing a basic state by
Or (into substates) or by And (into orthogonal components); 2) adding substates
to an Or state; and 3) adding orthogonal components to any state. Transitions
can be added to the derived statechart, and certain modifications are allowed
in the original inherited ones: the target state of an inherited transition can be
changed, for example, and certain changes are also allowed in the guard and
action.

Our current experience in biological modeling points towards allowing in
Biocharts the modeler to perform any changes he would like to the derived
statechart, including building it from scratch. In case the modeler decides to
indeed perform only very well controlled changes in the derived call, it will be
beneficial if the tool can provide traceability and show visually where exactly
changes were made.

5.5 Dynamic Changes to a Statechart

We propose a new feature for Biocharts, which we believe will become useful
for biological modeling but which was not supported in previous statechart se-
mantics. This is the ability to change the statechart itself during runtime. The
motivation for this feature is that in biology there is a stronger connection than
in software between the structure of the system and its behavior, and a natural
way to represent changes in the structure of the biological system is by adding
or removing a transition, adding a new basic-state, or changing the target of a
default transition.

We propose to support such a dynamic change on the object level or on the
class level. If the change is on the object level, it can be invoked by calling,
for example, the method O.RemoveT ransition(t) for object O that contains
transition t, and the result at runtime would be that for object O transition t
from this point onwards will not be considered. Invoking such a call on the class
level, for example by calling C.RemoveT ransition(t), will remove transition t
from all existing objects of class C, and future instances of the class will be
created without this transition.

Although supporting this feature in an implementing tool, such as Rhapsody,
will require overcoming various technical challenges, we believe it is a very nat-
ural representation of the dynamic changes in a biological system and will allow
one to perform in-silico mutations and various perturbations in a natural and
elegant way.
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5.6 Steps

At the heart of statechart semantics is the precise definition of the effect of a
step, which takes the system from one stable configuration to the next one. In
general, we propose to adapt the definitions of the Rhapsody semantics; for a
detailed description see [HK04]. However, we leave open two key issues, for which
we suggest to carefully consider whether to adopt the Rhapsody semantics or
the Statemate semantics [HN96].

These issues are these: (i) Should changes made in a given step take effect in
the current step or only in the next step; (ii) does a step take zero time or can
it take more than zero time.

In Rhapsody, changes made in a given step take effect in the current step, and a
step can take more than zero time, whereas in Statemate changes made in a given
step take effect only in the next step and a step takes zero time. In Rhapsody, as
mentioned earlier, the action language is the programming language that serves
as the target for the code generator, thus it would have been difficult to postpone
to the next step the effects of changes caused by running part of an action in a
given step. Also the zero time step assumption does not hold for such general
action languages. However, if a special action language is defined for Biocharts,
this opens the way to consider adapting the Statemate semantics for these two
issues.

Another issue involves how to resolve conflicting transitions. Roughly speak-
ing, Rhapsody gives priority to lower level source states, while Statemate gives
priority to higher level ones. We propose to adopt the Rhapsody priority scheme,
since it is intuitive in an object-oriented setting, in that it allows to “override”
behavior in lower level states. Rhapsody tries to detect and disallow transitions
that have the same trigger and guard and have the same priority, with the moti-
vation that the generated code is intended to serve as a final implementation and
for most embedded software systems such nondeterminism is not acceptable. For
biological modeling nondeterminism is very common and useful, so we suggest
to support it in Biocharts too.

We also think that Biocharts should include support for the clear history op-
erator, which erases the history of a state so that the next time the history
connector for this state is entered the default transition will be taken. The moti-
vation for supporting this feature is that it corresponds to biological phenomena
that may be modeled in an easier way with clear history. We also suggest to
revisit the way null transitions are handled in Rhapsody to ensure that one can
specify a null transition with a guard and it will be taken immediately when
the guard becomes true. In Rhapsody, such guards were evaluated on entering
the state, so later changes did not always take effect unless they were associated
with a visible event.

5.7 Low Level Modules

We now explain how the low level part of the two-tier language of Biocharts,
which will typically describe the dynamics of the biological pathways and net-
works, is integrated with the high-level statechart part.
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A state in a Biochart’s statechart can include a ‘low-level’ module, which
is a program P . This P is activated on entering the state, by calling P.Start,
and is stopped when the state is exited, by calling P.Stop. The program P has
input variables x1, x2, · · ·xl, output variables y1, y2, · · · ym and local variables
z1, z2, · · · zn. The input and output variables are part of the object’s variables,
so that, for example, another program P ′ activated in an orthogonal state can
use an output variable of P as one of its input variables.

Input variables are accessed by the program P by calling xi.get() initially and
at any stage of its computation. Similarly, P can set the value of the output vari-
ables by calling yj .set(val). A Biocharts framework for supporting complicated
scenarios with shared variables will need to support locking and notification of
value changes for shared variables. To support hybrid modeling some of the local
variables zi can be continuous, and their dynamics would then be determined
by a set of differential equations.

6 A Pledge

We are fully aware of the fact that in this paper we have only touched upon some
of the issues around the semantics of Biocharts. In fact, there are several issues
about what to include in, or exclude from, the language itself prior to defining
the semantics rigorously. Obviously, all this has to be done before the language
can be viewed as a complete modeling medium for biological systems.

The truth is that not only do we deeply miss Amir Pnueli personally, but we
are confident that he would have been the ideal colleague with whom to continue
this line of work. His pioneering research on hybrid systems, his unparalleled
understanding of semantic issues for reactivity, and his rare scientific wisdom,
would all have made the future work on this topic far easier, and the results far
better than we can ever expect them to become in his absence.

Nevertheless, we pledge to forge forward with this work, with whatever talents
and abilities we can muster, and bring it to a state where it can be seriously
evaluated and hopefully then adopted and used beneficially.
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